3 research outputs found

    Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses

    Get PDF
    Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002-4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M) and nucleocapsid (N). This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior

    Rigidity of the Outer Shell Predicted by a Protein Intrinsic Disorder Model Sheds Light on the COVID-19 (Wuhan-2019-nCoV) Infectivity

    Get PDF
    The world is currently witnessing an outbreak of a new coronavirus spreading quickly across China and affecting at least 24 other countries. With almost 65,000 infected, a worldwide death toll of at least 1370 (as of 14 February 2020), and with the potential to affect up to two-thirds of the world population, COVID-19 is considered by the World Health Organization (WHO) to be a global health emergency. The speed of spread and infectivity of COVID-19 (also known as Wuhan-2019-nCoV) are dramatically exceeding those of the Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). In fact, since September 2012, the WHO has been notified of 2494 laboratory-confirmed cases of infection with MERS-CoV, whereas the 2002–2003 epidemic of SARS affected 26 countries and resulted in more than 8000 cases. Therefore, although SARS, MERS, and COVID-19 are all the result of coronaviral infections, the causes of the coronaviruses differ dramatically in their transmissibility. It is likely that these differences in infectivity of coronaviruses can be attributed to the differences in the rigidity of their shells which can be evaluated using computational tools for predicting intrinsic disorder predisposition of the corresponding viral proteins

    A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions
    corecore